

Carbonyl Alpha-Substitution Reactions

Based on McMurry's *Organic Chemistry*, 7th edition By Jalal Hasan Mohammed 2014-2015

The α Position

- The carbon next to the carbonyl group is designated as being in the α position
- Electrophilic substitution occurs at this position through either an *enol* or *enolate ion*

Keto–Enol Tautomerism

- A carbonyl compound with a hydrogen atom on its a carbon rapidly equilibrates with its corresponding enol
- Compounds that differ only by the position of a moveable proton are called tautomers

Tautomers Are Not Resonance Forms

- Tautomers are structural isomers
- Resonance forms are representations of contributors to a single structure
- Tautomers interconvert rapidly while ordinary isomers do not

4

Enols

The enol tautomer is usually present to a very small extent and cannot be isolated
However, since it is formed rapidly, it can serve as a reaction intermediate

Acid Catalysis of Enolization

Brønsted acids catalyze keto-enol tautomerization by protonating the carbonyl and activating the α protons

Base Catalysis of Enolization

- Brønsted bases catalyze keto-enol tautomerization
 The hydrogens on the α carbon are weakly acidic and transfer to water is slow
- In the reverse direction there is also a barrier to the addition of the proton from water to enolate carbon

Enol tautomer

Acid Catalyzed Enolization

- The addition of a proton to the carbonyl oxygen makes the α
 C-H more acidic, reducing the barrier to the enol
- The enol then can react with another electrophile

22.2 Reactivity of Enols: The Mechanism of Alpha-Substitution Reactions

Enols behave as nucleophiles and react with electrophiles because the double bonds are electronrich compared to alkenes

General Mechanism of Addition to Enols

 When an *enol* reacts with an electrophile the intermediate cation immediately loses the —OH proton to give a substituted carbonyl compound

22.3 Alpha Halogenation of Aldehydes and Ketones

Aldehydes and ketones can be halogenated at their α positions by reaction with Cl₂, Br₂, or l₂ in acidic solution

Mechanism of Electrophilic Substitution

 The enol tautomer reacts with an electrophile
 The keto tautomer loses a proton

@ 2004 Thomson/Brooks Cole

Evidence for the Rate-Limiting Enol Formation

- The rate of halogenation is independent of the halogen's identity and concentration
- In D_3O^+ the α H's are replaced by D's at the same rate as halogenation
 - This because the barrier to formation of the enol goes through the highest energy transiton state in the mechanism

X = Cl, Br, or I

© 2004 Thomson/Brooks Cole

Elimination Reactions of α-Bromoketones

 α-Bromo ketones can be dehydrobrominated by base treatment to yield α,β-unsaturated ketones

Alpha Bromination of Carboxylic Acids: The Hell– Volhard–Zelinskii Reaction

- Carboxylic acids do not react with Br₂ (Unlike aldehydes and ketones)
 - They are brominated by a mixture of Br₂ and PBr₃ (Hell–Volhard–Zelinskii reaction)

Mechanism of Bromination

PBr₃ converts -COOH to –COBr, which can enolize and add Br₂

22.5 Acidity of Alpha Hydrogen Atoms: Enolate Ion Formation

Carbonyl compounds can act as weak acids (pK_a of acetone = 19.3; pK_a of ethane = 60)
 The conjugate base of a ketone or aldehyde is an enolate ion - the negative charge is delocalized onto oxygen

Reagents for Enolate Formation

- Ketones are weaker acids than the OH of alcohols so a a more powerful base than an alkoxide is needed to form the enolate
- Sodium hydride (NaH) or lithium diisopropylamide $[LiN(i-C_3H_7)_2]$ are strong enough to form the enolate

Lithium Diisopropylamide (LDA)

- LDA is from butyllithium (BuLi) and diisopropylamine $(pK_a \approx 40)$
- Soluble in organic solvents and effective at low temperature with many compounds (see Table 22.1)
 Not nucleophilic

β-Dicarbonyls Are More Acidic

When a hydrogen atom is flanked by two carbonyl groups, its acidity is enhanced (Table 22.1)
Negative charge of enolate delocalizes over both carbonyl groups

Acidities of Organic Compounds

Compound type	Compound	рК _а
Carboxylic acid	CH3COOH	5
1,3-Diketone	CH ₂ (COCH ₃) ₂	9
1,3-Keto ester	CH3COCH2CO2C2H5	11
1,3-Dinitrile	CH ₂ (CN) ₂	-
1,3-Diester	CH ₂ (CO ₂ C ₂ H ₅) ₂	13
Alcohol	CH3CH2OH	16
Acid chloride	CH ₃ COCI	16
Aldehyde	СНзсно	17
Ketone	CH3COCH3	19
Ester	CH ₃ C0 ₂ C ₂ H ₅	25
Nitrile	CH ₃ CN	25
Dialkymide	CH ₃ CON(CH ₃) ₂	30
Ammonia	NH3	36
Dialkylamine	HN(i–C ₃ H ₇) ₂	40
Alkyne	HC=CH	25
Alekene	CH ₂ =CH ₂	44
Alkane	CH ₂ CH ₂	60

Reactivity of Enolate Ions

:0:

The carbon atom of an enolate ion is electron-rich and highly reactive toward electrophiles (enols are not as reactive)

@ 2004 Thomson/Brooks Cole

Two Reactions Sites on Enolates

- Reaction on oxygen yields an enol derivative
- Reaction on carbon yields an α-substituted carbonyl compound

22.7 Halogenation of Enolate Ions: The Haloform Reaction

Base-promoted reaction occurs through an enolate ion intermediate

Further Reaction: Cleavage

Monohalogenated products are themselves rapidly turned into enolate ions and further halogenated until the trihalo compound is formed from a methyl ketone
 The product is cleaved by hydroxide with CX₃ as a leaving group

Alkylation of Enolate Ions

Alkylation occurs when the nucleophilic enolate ion reacts with the electrophilic alkyl halide or tosylate and displaces the leaving group

Constraints on Enolate Alkylation

- S_N2 reaction:, the leaving group X can be chloride, bromide, iodide, or tosylate
- R should be primary or methyl and preferably should be allylic or benzylic
- Secondary halides react poorly, and tertiary halides don't react at all because of competing elimination

$$\begin{array}{ll} \mathbf{R-X} \begin{cases} -\mathbf{X}: & \text{Tosylate} > -\mathbf{I} > -\mathbf{Br} > -\mathbf{Cl} \\ \mathbf{R-X}: & \text{Allylic} \approx \mathbf{Benzylic} > \mathbf{H}_3\mathbf{C} - > \mathbf{RCH}_2 - \end{array} \end{array}$$

The Malonic Ester Synthesis

For preparing a carboxylic acid from an alkyl halide while lengthening the carbon chain by two atoms

Formation of Enolate and Alkylation

- Malonic ester (diethyl propanedioate) is easily converted into its enolate ion by reaction with sodium ethoxide in ethanol
- The enolate is a good nucleophile that reacts rapidly with an alkyl halide to give an α-substituted malonic ester

Dialkylation

The product has an acidic α -hydrogen, allowing the alkylation process to be repeated

Hydrolysis and Decarboxylation

The malonic ester derivative hydrolyzes in acid and loses CO₂ ("decarboxylation") to yield a substituted monoacid

Decarboxylation of β-Ketoacids

- Decarboxylation requires a carbonyl group two atoms away from the —CO₂H
 - The second carbonyl permit delocalization of the resulting enol
- The reaction can be rationalized by an internal acidbase reaction

Decarboxylation Involves Changes in Hybridization

- The reaction involves formation of a zwitterionic tautomer
 - The carboxylate C is sp² and becomes sp in CO₂
 - The α -C goes from sp³ to sp² in the key step

Reminder of Overall Conversion

The malonic ester synthesis converts an alkyl halide into a carboxylic acid while lengthening the carbon chain by two atoms

2-Methvlhexanoic acid (74%)

© 2004 Thomson/Brooks Cole

Preparation Cycloalkane Carboxylic Acids

- 1,4-dibromobutane reacts twice, giving a cyclic product
 - Three-, four-, five-, and six-membered rings can be prepared in this way

1,4-Dibromobutane

The Acetoacetic Ester Synthesis

Overall: converts an alkyl halide into a methyl ketone

Acetoacetic Ester (Ethyl Acetoacetate)

 α carbon is flanked by two carbonyl groups, so it readily becomes an enolate ion

This which can be alkylated by an alkyl halide and also can react with a second alkyl halide

A dialkylated acetoacetic ester ³⁸

acetoacetic ester © 2004 Thomson/Brooks Cole

A monoalkylated

Decarboxylation of Acetoacetic Acid

β-Ketoacid from hydrolysis of ester undergoes decarboxylation to yield a ketone via the enol

© 2004 Thomson/Brooks Cole

Generalization: β-Keto Esters

- The sequence: enolate ion formation, alkylation, hydrolysis/decarboxylation is applicable to β-keto esters in general
- Cyclic β-keto esters give 2-substituted cyclohexanones

