
Aldehydes and Ketones

- Aldehydes (RCHO) and ketones (R₂CO) are characterized by the the carbonyl functional group (C=O)
- The compounds occur widely in nature as intermediates in metabolism and biosynthesis

Class	General Formula	Class	General Formula
ketones	$\mathbf{R} - \mathbf{C} - \mathbf{R}'$	aldehydes	O ∥ R−C−H
Ketones		alucityues	K C II
carboxylic acids	R−C−OH	acid chlorides	R-C-Cl
esters	R - C - O - R'	amides	$R - C - NH_2$

Naming Aldehydes and Ketones

- Aldehydes are named by replacing the terminal -e of the corresponding alkane name with -al
- The parent chain must contain the —CHO group
 - The —CHO carbon is numbered as C1
- If the —CHO group is attached to a ring, use the suffix carbaldehyde.
- See Table 19.1 for common names

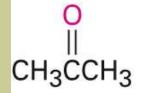
Naming Ketones

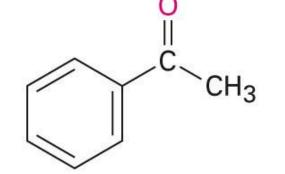
- Replace the terminal -e of the alkane name with -one
- Parent chain is the longest one that contains the ketone group
 - Numbering begins at the end nearer the carbonyl carbon

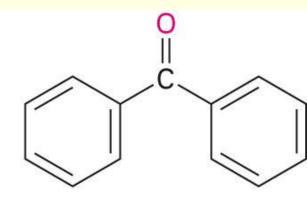
O || CH₃CH₂CCH₂CH₂CH₂CH₃ 1 2 34 5 6

$$CH_3CH = CHCH_2CCH_3$$

6 5 4 3 21

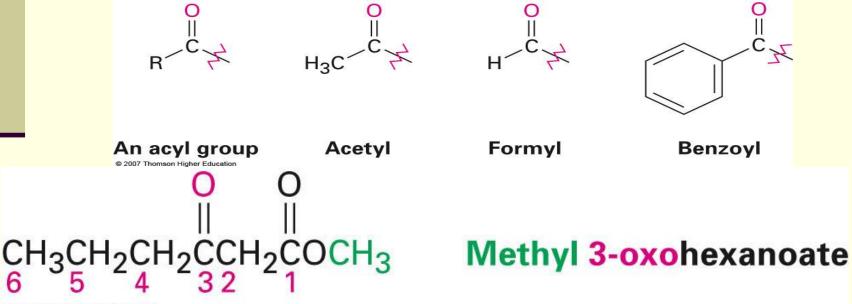

 $\begin{array}{cccc}
0 & 0 \\
\parallel & \parallel \\
CH_3CH_2CCH_2CCH_3 \\
6 & 5 & 43 & 21
\end{array}$


3-Hexanone (New: Hexan-3-one) © 2007 Thomson Higher Education 4-Hexen-2-one (New: Hex-4-en-2-one) 2,4-Hexanedione (New: Hexane-2,4-dione)


4

Ketones with Common Names

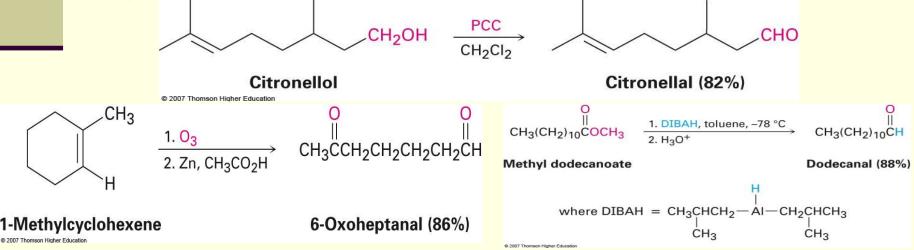
IUPAC retains well-used but unsystematic names for a few ketones



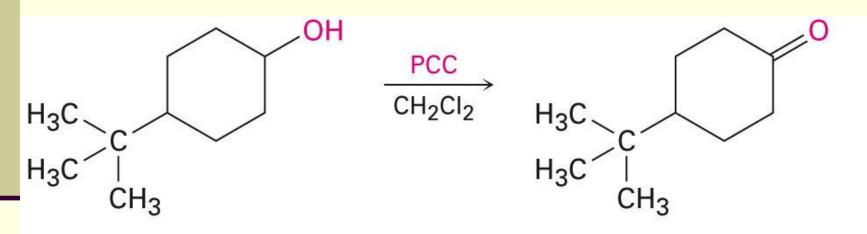
Acetone © 2007 Thomson Higher Education Acetophenone

Benzophenone

Ketones and Aldehydes as Substituents


- The R–C=O as a substituent is an acyl group, used with the suffix -yl from the root of the carboxylic acid
 CH₃CO: acetyl; CHO: formyl; C₆H₅CO: benzoyl
- The prefix oxo- is used if other functional groups are present and the doubly bonded oxygen is labeled as a substituent on a parent chain

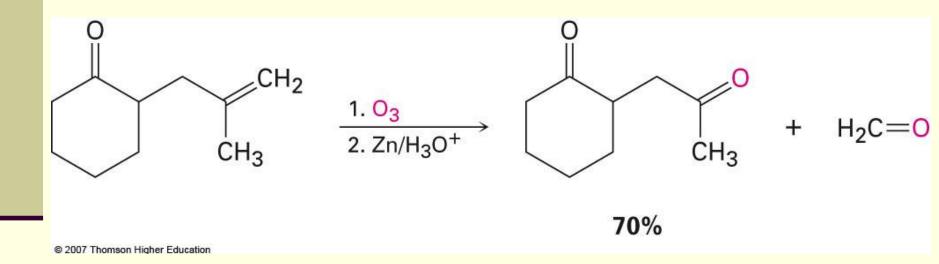
Preparation of Aldehydes and Ketones


Preparing Aldehydes

- Oxidize primary alcohols using pyridinium chlorochromate
- Alkenes with a vinylic hydrogen can undergo oxidative cleavage when treated with ozone, yielding aldehydes
- Reduce an ester with disobutylaluminum hydride (DIBAH)

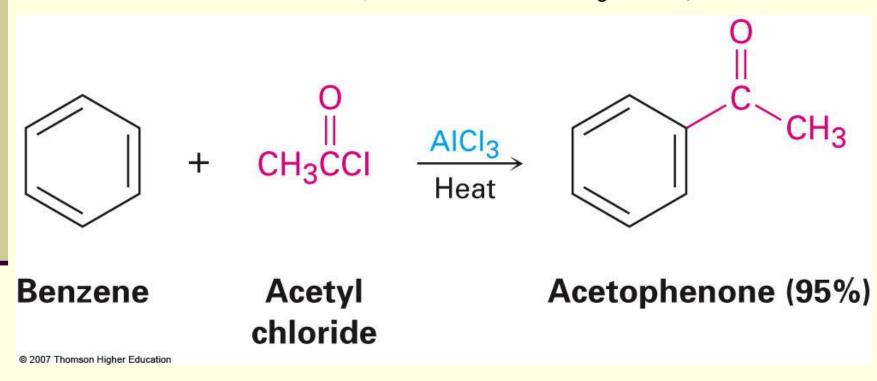
Preparing Ketones

- Oxidize a 2° alcohol
- Many reagents possible: choose for the specific situation (scale, cost, and acid/base sensitivity)



4-tert-Butylcyclohexanol

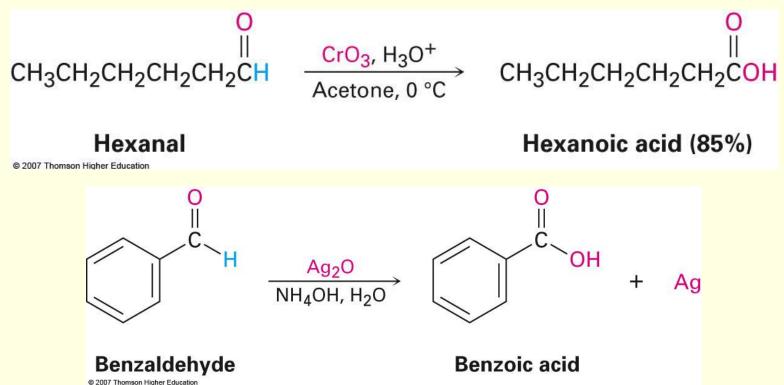
4-tert-Butylcyclohexanone (90%)


Ketones from Ozonolysis

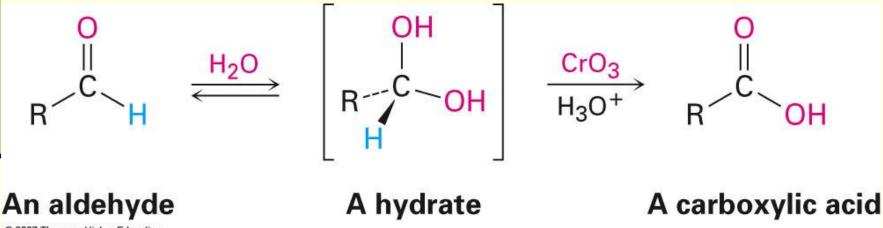
Ozonolysis of alkenes yields ketones if one of the unsaturated carbon atoms is disubstituted

Aryl Ketones by Acylation

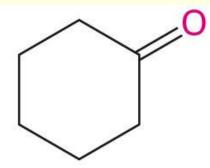
Friedel–Crafts acylation of an aromatic ring with an acid chloride in the presence of AICl₃ catalyst

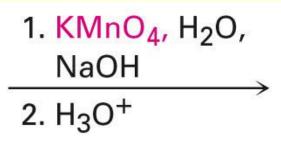

Methyl Ketones by Hydrating Alkynes

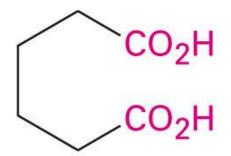
Hydration of terminal alkynes in the presence of Hg²⁺ (catalyst: Section 8.4)


Oxidation of Aldehydes and Ketones

- CrO₃ in aqueous acid oxidizes aldehydes to carboxylic acids efficiently
- Silver oxide, Ag₂O, in aqueous ammonia (Tollens' reagent) oxidizes aldehydes (no acid)


Hydration of Aldehydes


- Aldehyde oxidations occur through 1,1-diols ("hydrates")
- Reversible addition of water to the carbonyl group
- Aldehyde hydrate is oxidized to a carboxylic acid by usual reagents for alcohols

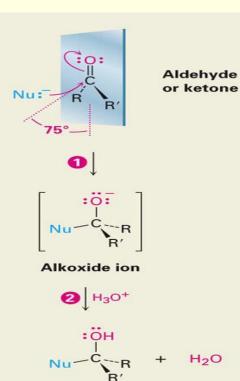


Ketones Oxidize with Difficulty

- Undergo slow cleavage with hot, alkaline KMnO₄
- C–C bond next to C=O is broken to give carboxylic acids
- Reaction is practical for cleaving symmetrical ketones

Cyclohexanone

© 2007 Thomson Higher Education


Hexanedioic acid (79%)

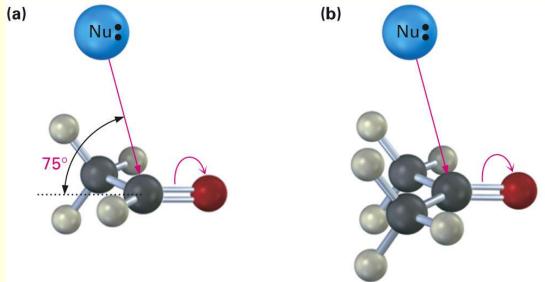
Nucleophilic Addition Reactions of Aldehydes and Ketones

- Nu⁻ approaches 75° to the plane of C=O and adds to C
- A tetrahedral alkoxide ion intermediate is produced

An electron pair from the nucleophile adds to the electrophilic carbon of the carbonyl group, pushing an electron pair from the C=O bond onto oxygen and giving an alkoxide ion intermediate. The carbonyl carbon rehybridizes from sp^2 to sp^3 .

Protonation of the alkoxide anion intermediate gives the neutral alcohol addition product.

Nucleophiles


- Nucleophiles can be negatively charged (: Nu⁻) or neutral (: Nu) at the reaction site
- The overall charge on the nucleophilic species is not considered

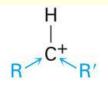
Some neutral nucleophiles

HÖH (water) RÖH (an alcohol) H₃N: (ammonia) RŇH₂ (an amine)

Relative Reactivity of Aldehydes and Ketones

- Aldehydes are generally more reactive than ketones in nucleophilic addition reactions
- The transition state for addition is less crowded and lower in energy for an aldehyde (a) than for a ketone (b)
- Aldehydes have one large substituent bonded to the C=O: ketones have two

Electrophilicity of Aldehydes and Ketones


- Aldehyde C=O is more polarized than ketone C=O
- As in carbocations, more alkyl groups stabilize + character
- Ketone has more alkyl groups, stabilizing the C=O carbon inductively

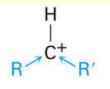
1° carbocation (less stable, more reactive)

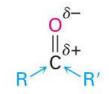
Aldehyde (less stabilization of δ +, more reactive)

2° carbocation (more stable, less reactive)

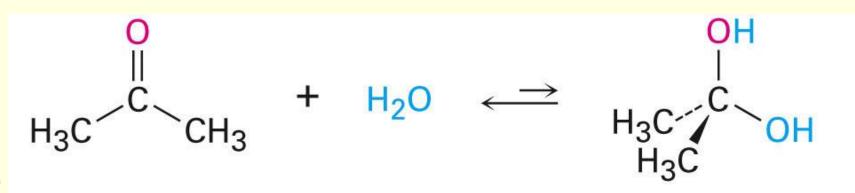
Ketone (more stabilization of δ +, less reactive)

Reactivity of Aromatic Aldehydes


- Less reactive in nucleophilic addition reactions than aliphatic aldehydes
- Electron-donating resonance effect of aromatic ring makes C=O less reactive electrophile than the carbonyl group of an aliphatic aldehyde


1° carbocation (less stable, more reactive)

Aldehyde (less stabilization of δ +, more reactive)


2° carbocation (more stable, less reactive)

Ketone (more stabilization of δ +, less reactive)

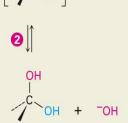
Nucleophilic Addition of H₂O: Hydration

- Aldehydes and ketones react with water to yield 1,1diols (geminal (gem) diols)
- Hyrdation is reversible: a gem diol can eliminate water

Acetone (99.9%)

© 2007 Thomson Higher Education

Acetone hydrate (0.1%)

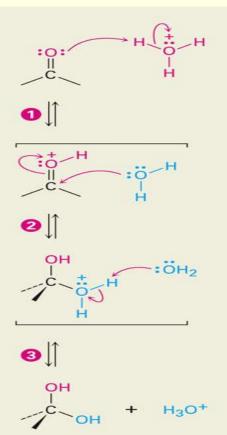

Base-Catalyzed Addition of Water

- Addition of water is catalyzed by both acid and base
- The base-catalyzed hydration nucleophile is the hydroxide ion, which is a much stronger nucleophile than water

0

- The nucleophilic hydroxide ion adds to the aldehyde or ketone and yields a tetrahedral alkoxide ion intermediate.
- 2 The alkoxide ion is protonated by water to give the gem diol product and regenerate the hydroxide ion catalyst.

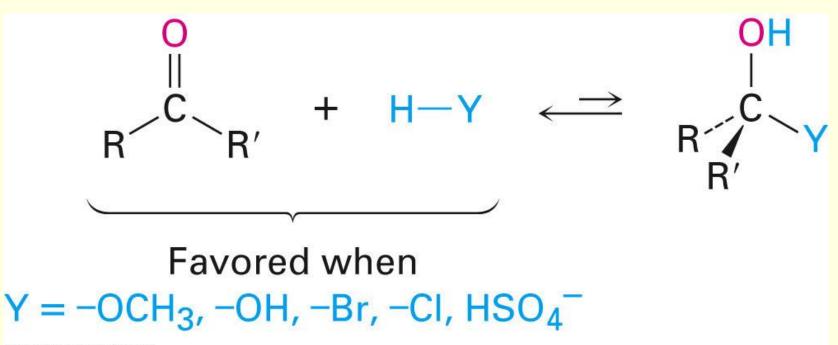
A hydrate, or gem diol


Acid-Catalyzed Addition of Water

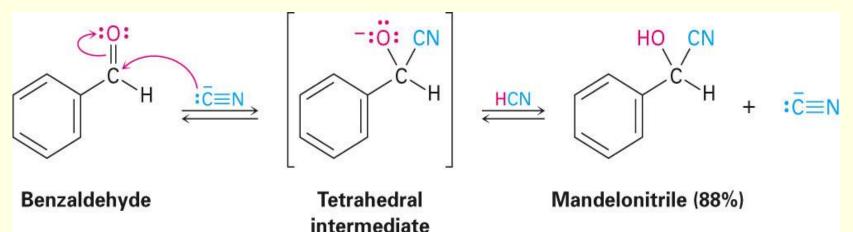
Protonation of C=O makes it more electrophilic

 Acid catalyst protonates the basic carbonyl oxygen atom, making the aldehyde or ketone a better acceptor for nucleophilic addition.

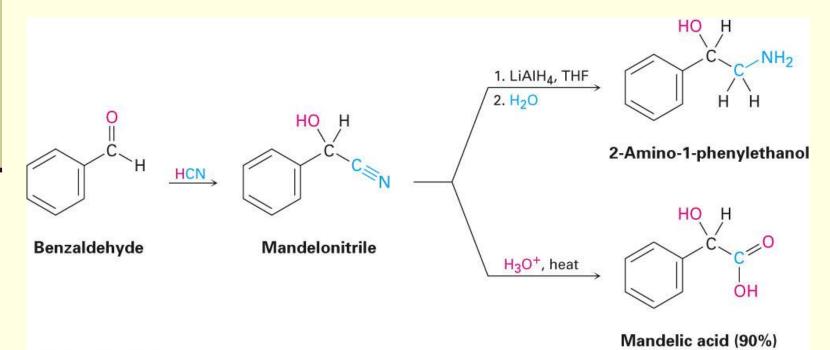
Addition of water to the protonated carbonyl compound gives a protonated gem diol intermediate.


Opprotonation of the intermediate by reaction with water yields the neutral gem diol and regenerates the acid catalyst.

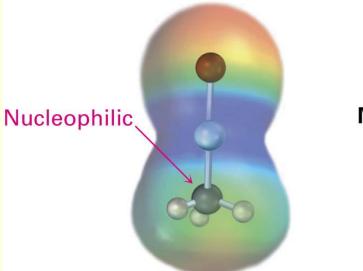
A hydrate, or gem diol


Addition of H-Y to C=O

Reaction of C=O with H-Y, where Y is electronegative, gives an addition product ("adduct")
 Formation is readily reversible


Nucleophilic Addition of HCN: Cyanohydrin Formation

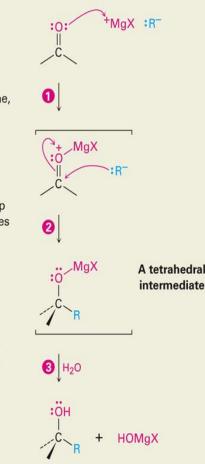
- Aldehydes and unhindered ketones react with HCN to yield cyanohydrins, RCH(OH)C=N
- Addition of HCN is reversible and base-catalyzed, generating nucleophilic cyanide ion, CN⁻
- Addition of CN⁻ to C=O yields a tetrahedral intermediate, which is then protonated
- Equilibrium favors adduct


Uses of Cyanohydrins

- The nitrile group (—C=N) can be reduced with LiAlH₄ to yield a primary amine (RCH₂NH₂)
- Can be hydrolyzed by hot acid to yield a carboxylic acid

Nucleophilic Addition of Grignard Reagents and Hydride Reagents: Alcohol Formation

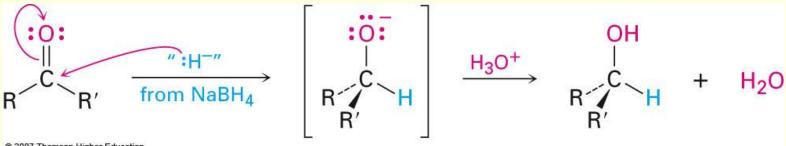
- Treatment of aldehydes or ketones with Grignard reagents yields an alcohol
 - Nucleophilic addition of the equivalent of a *carbon* anion, or **carbanion**. A carbon–magnesium bond is strongly polarized, so a Grignard reagent reacts for all practical purposes as R : ⁻ MgX +.


Methylmagnesium chloride

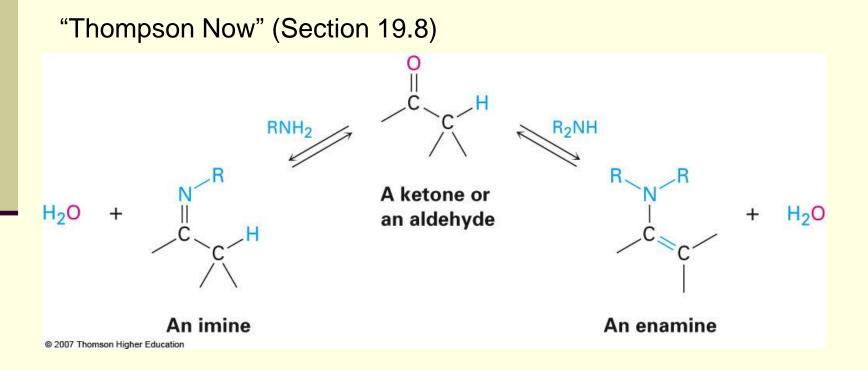
Mechanism of Addition of Grignard Reagents

- Complexation of C=O by Mg^{2+,} Nucleophilic addition of R : -, protonation by dilute acid yields the neutral alcohol
 - Grignard additions are irreversible because a carbanion is not a leaving group

- The Lewis acid Mg²⁺ first forms an acid-base complex with the basic oxygen atom of the aldehyde or ketone, thereby making the carbonyl group a better acceptor.
- Nucleophilic addition of an alkyl group R⁻ to the aldehyde or ketone produces a tetrahedral magnesium alkoxide intermediate . . .


3 ... which undergoes hydrolysis when water is added in a separate step. The final product is a neutral alcohol.

An alcohol


Hydride Addition

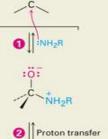
- Convert C=O to CH-OH
- LiAIH₄ and NaBH₄ react as donors of hydride ion
- Protonation after addition yields the alcohol

Nucleophilic Addition of Amines: Imine and Enamine Formation

RNH₂ adds to C=O to form imines, $R_2C=NR$ (after loss of HOH) R_2NH yields enamines, R_2N — $CR=CR_2$ (after loss of HOH) (*ene* + *amine* = unsaturated amine)

Mechanism of Formation of Imines

- Primary amine adds to C=O
- Proton is lost from N and adds to O to yield a neutral amino alcohol (carbinolamine)
- Protonation of OH converts into water as the leaving group
- Result is iminium ion, which loses proton
- Acid is required for loss of OH – too much acid blocks RNH₂


- Nucleophilic attack on the ketone or aldehyde by the lone-pair electrons of an amine leads to a dipolar tetrahedral intermediate.
- A proton is then transferred from nitrogen to oxygen, yielding a neutral carbinolamine.

The nitrogen lone-pair electrons expel water, giving an iminium ion.

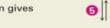
Acid catalyst protonates the hydroxyl

oxygen.

6 Loss of H⁺ from nitrogen then gives the neutral imine product.

Ketone/aldehyde

Carbinolamine



Iminium ion

Imine Derivatives

- Addition of amines with an atom containing a lone pair of electrons on the adjacent atom occurs very readily, giving useful, stable imines
- For example, hydroxylamine forms oximes and 2,4dinitrophenylhydrazine readily forms 2,4dinitrophenylhydrazones
 - These are usually solids and help in characterizing liquid ketones or aldehydes by melting points

2,4-Dinitrophenylhydrazone $H_{3}C \xrightarrow{O} CH_{3} + H_{2}N \xrightarrow{H} NO_{2} \longrightarrow H_{3}C \xrightarrow{} H_{3$

2,4-Dinitrophenyl-

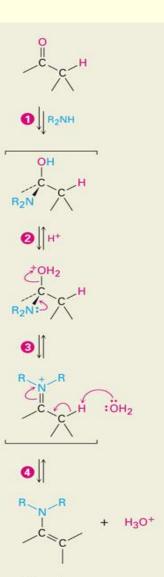
hydrazine

+

Acetone 2,4-dinitrophenylhydrazone (mp 126 °C)

Acetone

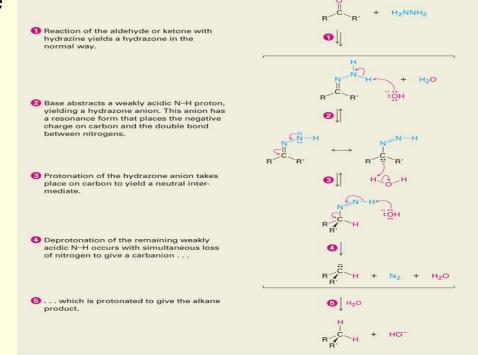
H₂O


Enamine Formation

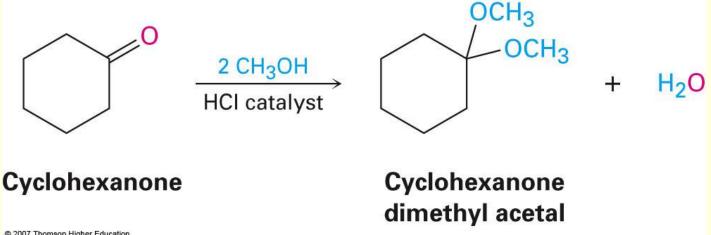
After addition of R₂NH, proton is lost from adjacent carbon

 Nucleophilic addition of a secondary amine to the ketone or aldehyde, followed by proton transfer from nitrogen to oxygen, yields an intermediate carbinolamine in the normal way.

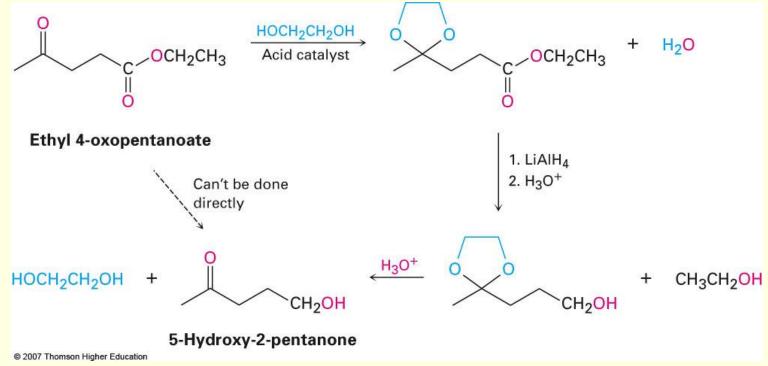
- Protonation of the hydroxyl by acid catalyst converts it into a better leaving group.
- Elimination of water by the lone-pair electrons on nitrogen then yields an intermediate iminium ion.


4 Loss of a proton from the alpha carbon atom yields the enamine product and regenerates the acid catalyst.

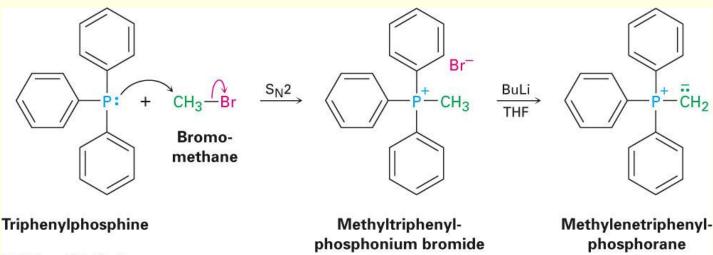
Enamine


Nucleophilic Addition of Hydrazine: The Wolff–Kishner Reaction

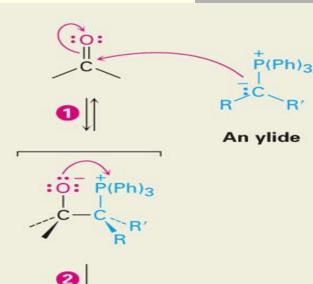
- Treatment of an aldehyde or ketone with hydrazine, H₂NNH₂ and KOH converts the compound to an alkane
- Originally carried out at high temperatures but with dimethyl sulfoxide as solvent takes place near room temperature


Nucleophilic Addition of Alcohols: Acetal Formation

- Alcohols are weak nucleophiles but acid promotes addition forming the conjugate acid of C=O
- Addition yields a hydroxy ether, called a hemiacetal (reversible); further reaction can occur
- Protonation of the —OH and loss of water leads to an oxonium ion, R₂C=OR+ to which a second alcohol adds to form the acetal


Uses of Acetals

- Acetals can serve as protecting groups for aldehydes and ketones
- It is convenient to use a diol, to form a cyclic acetal (the reaction goes even more readily)

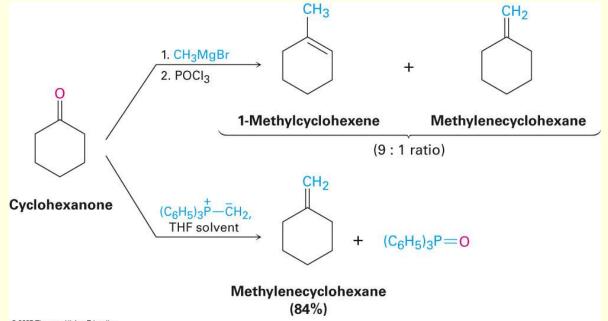

Nucleophilic Addition of Phosphorus Ylides: The Wittig Reaction

- The sequence converts C=O is to C=C
- A phosphorus *ylide* adds to an aldehyde or ketone to yield a dipolar intermediate called a *betaine*
- The intermediate spontaneously decomposes through a four-membered ring to yield alkene and triphenylphosphine oxide, (Ph)₃P=O
- Formation of the ylide is shown below

Mechanism of the Wittig Reaction

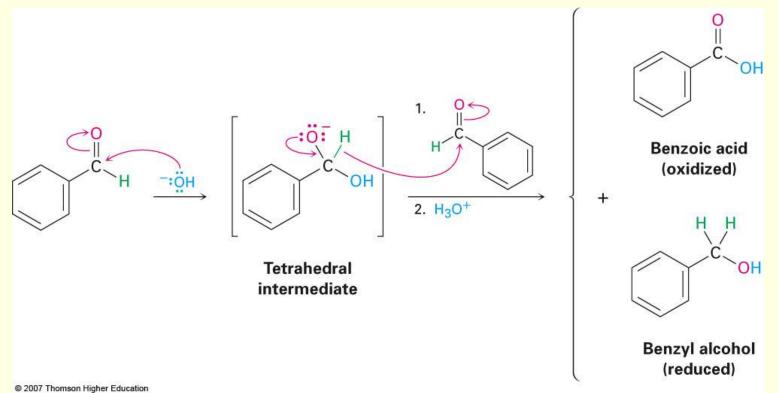
 The nucleophilic carbon atom of the phosphorus ylide adds to the carbonyl group of a ketone or aldehyde to give an alkoxide ion intermediate.

 $(Ph)_3P = O$


3

2 The alkoxide ion then undergoes intramolecular O–P bond formation to produce a four-membered ring . . .

3 . . . which spontaneously decomposes to give an alkene and triphenylphosphine oxide.


Uses of the Wittig Reaction

- Can be used for monosubstituted, disubstituted, and trisubstituted alkenes but not tetrasubstituted alkenes The reaction yields a pure alkene of known structure
- For comparison, addition of CH₃MgBr to cyclohexanone and dehydration with, yields a mixture of two alkenes

The Cannizaro Reaction

The adduct of an aldehyde and OH⁻ can transfer hydride ion to another aldehyde C=O resulting in a simultaneous oxidation and reduction (*disproportionation*)

