University of karbala Lec: Two

Collage of pharmacy

> Date: 3 / 3 rdd Stage $10 / 2014$

Course title: Inorganic medicinal and Pharmaceutical Chemistry.

Lec Title: Electronic structure of atoms: (part two)

The magnetic quantum number

\boldsymbol{Z} to $+\boldsymbol{R}$.

$>$ defines the spatial orientation of the orbital with respect to a standard set of coordinate axes.

For an orbital whose angularmomentum quantum number is I, the magnetic quantum number ml can have any integral value from to Thus, within each sub shell (orbitals with the same shape, or value of I), there are different spatial orientations for those orbitals

If $l=0$, then $m_{l}=0$
If $l=1$, then $m_{l}=-1,0$, or +1
If $l=2$, then $m_{l}=-2,-1,0,+1$, or +2
... and so forth

A summary of the allowed combinations of quantum numbers for the first
four shells is given in Table (1)

n	l	m_{I}	Orbital Notation	Number of Orbitals in Subshell	Number of Orbitals in Shell
1	0	0	$1 s$	1	1
2	0	0	$2 s$	1	4
	1	$-1,0,+1$	$2 p$	3	4
3	0	0	$3 s$	1	
3	1	$-1,0,+1$	$3 p$	3	9
	2	$-2,-1,0,+1,+2$	$3 d$	5	
	0	0	$4 s$	1	
4	1	$-1,0,+1$	$4 p$	3	16
	2	$-2,-1,0,+1,+2$	$4 d$	5	16

4-The spin quantum Number :

This number is presented by the symbol (ms) the electron can be envisioned in its particle state as a spinning mass. Since it is charged it will have a magnetic moment $+1 / 2$,$-1 / 2$. These are the only two allowed values of m_{s}.

The significance of this is that for two electrons to occupy the same orbital they must have opposing spin if one has $+1 / 2$ the other must have, $-1 / 2$.

The aufibau process :

The aufbau process :
\checkmark This process of atom build the fundamental rules that must be follows the first is.

1-pauli Exclusion principle

1-pauli Exclusion principle: it states that in any atom no two electrons may be described by the same set of values for the four quantum numbers

Ex : two electron in an orbital .

$\Delta(n)$ is the same
(I) is the same
(ml) is the same and $\mathrm{ms}+1 / 2$,1/2 other rules which apply to describe processes are:

Hands rule:

\rightarrow In the ground state of any atom an electron may enter only the vacant orbital of lowest or lower energy orbitals must be fllled before.
, Electrons must enter degenerate orbitals that is orbitals have the same energy,
$>3 \mathrm{x} 2 \mathrm{px}, 2 \mathrm{py}, 2 \mathrm{pz}$ so these electrons should enter singly with parallel spin, Or electrons should remain un paired in degenerate orbitals as long as possible.

It will be noticed that the electronic configuration of most atoms is the same as the atom having the next lowest atomic number , with exception of the added election.

In moving from atom to atom the correct number of protons and neutron must be present in the nucleus.
The number of protons is equal to the number and the number of neutrons could be obtained by subtracting atomic number from the atomic mass.

Note should be applied:

, orbitals in the first and second principal quantum number n=1 or n=2 are filled in the order as expected.
, Starting with the third principal quantum number n=3 the ns orbital must be filled before electrons can be added to an ($n-1$)d orbital Starting with third principal quantum number the ($n-1$)d orbitals must be filled before the elections can enter the np orbital
, in elements where f orbital which the low-lying orbital are filled and some atoms will have an electron or two in the next highest d orbital.

Tg. 1-2. Ordor of cil.

- FIGURE(1) Orbital energy levels for (a) hydrogen and (b) a typical multielectron
atom. The differences between energies of various subshells in (b) are exaggerated for clarity.

The certain elements in the transition series where d orbital are being filled level will be only half filled and the($n-1$ d orbital) will be either half fillled or full.

- Ex(1) : Cr chromium At.No. 24 has another structure 3d5 4s1
- Ex(2) :Copper At.No. 29 has another structure 3d10 4s1
- As a shorthand means of writing electronic configuration it is possible to used the inert gas (core) that precedes the element being consider.
- $\mathrm{xx}(1) \mathrm{Na}(11)$ which has the electronic configuration
$\checkmark N a ; 1 s 22 s 22 p 63 s 1$ can be whiten USIng the Neon core for the first ten electrons
$>\mathrm{Na}$ [Ne]3s1
$\rightarrow \mathrm{M}(25)$ [Ar] $3 \mathrm{~d} 54 \mathrm{~s}^{2}$
$\Rightarrow \mathrm{Ne}=10$ e $\mathrm{A} \Gamma=18 \mathrm{e}$.

Ionization :
The process of losing one or more electrons by chemical or physical means is known as jonization and the positive lon produce is termed a cation.
, This process is distinctly different firom Aufbau process in that is based in physical reality and should not be taken as the exact oppostite of the process of atom bulld up.
\checkmark It is always the most loosely (held) electrons which are lost first when an atom ionizes. However, the electronic structure of ion may not reveal $\left(\begin{array}{ll}\text { y } \\ \text { y }\end{array}\right.$) the level from which the electron was lost. This is particularly true (صاصـ transition elements.

There are several reasons for this

, This means that a high energy orbitals in one atom may be of lower energy in neighboring atom.
, 1-Relative orbital energies are subject) minki) to change as electrons are placed in them.
, 2-the possibility of rearrangement of the remaining electrons in an lon to a more stable configuration,
$>$ Usually atoms in transition series with incompletely filled of ofbitals will lonize to leave d jons,

Cobalt(27) would ionized
Co [Ar] 3d7 4s²
$\mathrm{Co} 2+[\mathrm{Ar}] 3 \mathrm{~d} 7$

But this dose not means that both electron were lost from the 4 s orbital.
one or both electrons may be lost from the 3d orbital followed by rearrangement of all the valence electrons into this orbital

Atom in which s or p orbitals are being filled will usually ionized to form ions with either gas or expand outer shells.
Those which form cations with inert gas shell structure include elements like Na and Mg .

$\mathrm{Mg}[\mathrm{Ne}] 3 \mathrm{~s} 2 \rightarrow[\mathrm{Mg}] 2+[\mathrm{Ne}] 3 \mathrm{~s} 1$

(al Rad
(b) $\mathrm{a}^{\text {lt }}$
(10) $\mathrm{I}^{\text {it }}$
(d) $\mathrm{N}^{\text {b }}$

In periodic table elements with ions having inert gas configuration correspond to the elements in groups IA and IIA and the inert gas shell of the ion is group VIIA of preceding period.

Quiz

Quiz

Quiz
What is the quantum number describe?
Draw the shape of p orbitals in execs?

