Kerbala University College of Pharmacy Dep. of Pharmaceutical Chemistry Organic Pharmaceutical Chemistry IV

By:

Zaid Al-Obaidi Assistant Lecturer in Pharmaceutical Chemistry MSc Pharmaceutical Analysis Sheffield, UK

Classification of polymers used for bioconjugation

Classification of polymers

Synthetic polymers:

- 1. Polyethylene glycol (PEG):
- 2. Vinyl polymers:
 - a) <u>N-(2-</u> <u>hydroxypropyl)methacrylamide</u> <u>(HPMA)</u>
 - *b) <u>Poly(styrene-co-maleic</u> <u>acid/anhydride) (SMA)</u>*
- 3. Divinylethermaleic anhydride/acid copolymer (DIVEMA)
- 4. Polyethylenimine (PEI) or polyaziridine

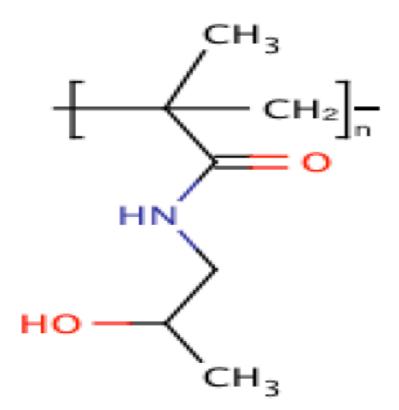
- <u>Natural polymers:</u>
 - 1. Dextran.
 - 2. Chitosan.
 - 3. Proteins.
 - 4. Pullulan.

Synthetic polymers

1. Polyethylene glycol (PEG)

Advantages of PEG

- non-toxic and nonimmunogenic.
- flexible, highly watersoluble
- site-specific conjugation to a drug
- Available in wide range M.Wt (300-10,000,000 Da)

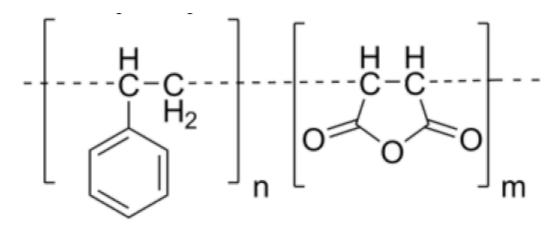

Disadvantage

 PEG molecule has only two reactive groups, therefore at most only two drug molecules can be attached to a bulky PEG molecule.

H-(O-CH₂-CH₂)n-OH

2. Vinyl polymers

• N-(2-hydroxypropyl)methacrylamide (HPMA)


a) N-(2-hydroxypropyl)methacrylamide (HPMA)

• Advantages:

- Non immunogenic.
- Nontoxic.
- Well resides in blood circulation.
- It is frequently used as macromolecular carriers for low molecular weight drugs (especially anti-cancer chemotherapeutic agents) to enhance therapeutic efficacy and limit side effects.

b) Poly(styrene-co-maleic acid/anhydride) (SMA)

Advantage: Ampiphillic nature of SMA is utilized in stable micelle formation.

3. Divinylethermaleic anhydride/acid copolymer (DIVEMA)

Advantages:

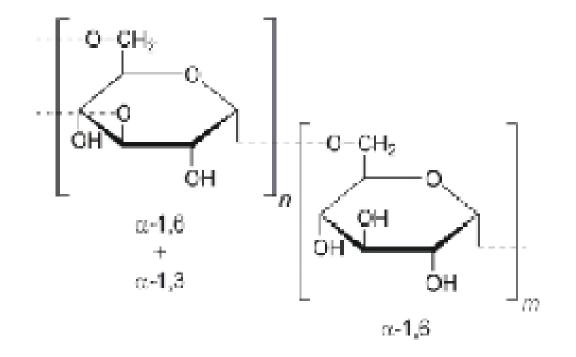
- 1. It has antitumor activity.
- 2. It induces the formation of interferon.
- It has antiviral, antibacterial, and antifungal activity.
- It is an anticoagulant and an antiinflammatory agent.

Disadvantages:

- 1. Pyrogenicity.
- 2. Thromobocytopenia.
- 3. Inhibition of microsomal enzymes.
- 4. Sensitization to endotoxin.
- 5. Liver damage.
- 6. Organomegaly, and
- 7. Depression of the reticuloendothelial system.

4. Polyethylenimine (PEI) or polyaziridine

Advantage:


 Linear PEIs of mol. wt. 22,000 are best to overcome nuclear barrier and yields the highest transfection rates.

Disadvantage:

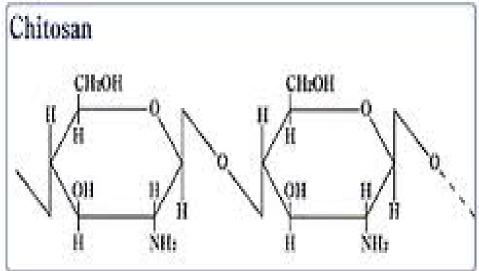
 It has a limitation of relatively high toxicity and this could prove problematic for repeated systemic use.

Natural polymers

1) Dextran

1) Dextran

Advantages:

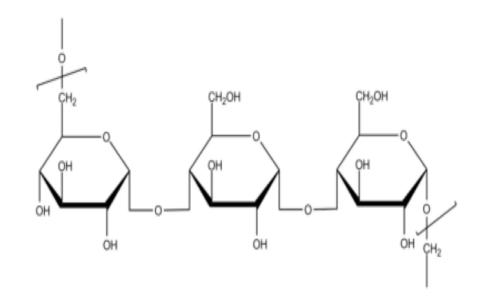

- It is biocompatible and biodegradable.
- It is biologically active
- possesses thrombolytic activity.
- It is non-immunogenic and non-toxic.

• **Disadvantages:** These include:

- Anaphylaxis.
- volume overload.
- pulmonary edema.
- cerebral edema, or
- platelet dysfunction.

2) Chitosan

Advantages: Chitosan enhances the transport of polar drugs across epithelial surfaces, and is biocompatible and biodegradable.


3) Proteins: Albumin

• Advantages:

- Albumin gets accumulated within solid tumors and hence is used for drug delivery and tumor targeting.
- It also increases the stability of attached therapeutic proteins.

4) Pullulan

 Advantages: Biodegradability, low immunogenicity and polyfunctionality and fair solubility in aqueous and few organic solvents, blood compatible, non-toxic, nonmutagenic and noncarcinogenic.

Cross-linking Reagents

Polymer-Drug Conjugates

Polymer-Drug Conjugates

- Polymer anticancer-drug conjugates are designed to:
 - *enhance the physico-chemical properties of the drug and
 - *administer the drug specifically to the tumor site
- They are prepared by conjugating anticancer drug to a polymeric backbone via covalent linkage.

Cross-linking reagents

- Biodegradable spacer is inserted in the conjugate to:
 - insure stability during systemic circulation and
 - facilitate specific enzymatic or hydrolytic release of the drug
 - e.g. Doxorubicin-HPMA (N-(2-hydroxypropyl) methacrylamide) conjugate

Doxorubicin-HPMA conjugate

- The polymer used is N-(2-hydroxypropyl) methacrylamide copolymer.
- The anticancer drug is bound to the polymer backbone using peptidyl spacer (Gly-Phe-Leu-Gly linker).
- This linker designed to be cleaved by Lysosomal thiol dependant proteases.
- The conjugate has a molecular weight of approx. 30,000 Da and a Doxorubicin content of approx. 8.5% (w/w).

"Antibody-Directed Enzyme Prodrug Therapy" (ADEPT)

Approach	Enzyme	Prodrug	Drug
ADEPT	Carboxypeptidase A	Methotrexate alanine	Methotrexate
ADEPT	B - Glucuronidase	Epirubicin glucoronide	Epirubicin

"Gene-Directed Enzyme Prodrug Therapy" (GDEPT)

Approach	Enzyme	Prodrug	Drug
GDEPT	Thymidine kinase	Ganciclovir	Ganciclovir triphosphate
GDEPT	Cytosine deaminase	5-Fluorocytosine	5-Fluorouracil
GDEPT	Nitroreductase	4-nitrobenzyloxy carbonyl derivative	Actinomycin D

References:

 Wilson and Gisvold Textbook of Organic Medicinal and Pharmaceutical Chemistry; Delgado JN, Remers WA, (Eds.); 12th ed., 2011.
http://www.pcb.ub.edu/fama/pdf/Current%20 Drug%20Delivery,%202012,%209,%2000-

000.pdf

3. http://omicsonline.org/polymeric-prodrugsrecent-achievements-and-general-strategiesjaa.S15-007.pdf

THANK YOU FOR YOUR LISTENING