

Carbonyl Condensation Reactions

Based on McMurry's *Organic Chemistry*, 7th edition By Jalal Hasan Mohammed

Condensation Reactions

Carbonyl compounds are *both* the electrophile and nucleophile in carbonyl condensation reactions

Electrophilic carbonyl group reacts with nucleophiles.

© 2007 Thomson Higher Education

Nucleophilic enolate ion reacts with electrophiles.

Carbonyl Condensation: The Aldol Reaction

- Acetaldehyde reacts in basic solution (NaOEt, NaOH) with another molecule of acetaldhyde
- The β-hydroxy aldehyde product is *aldol* (*ald*ehyde + alcoh*ol*)
- This is a general reaction of aldehydes and ketones

The Equilibrium of the Aldol

- The aldol reaction is reversible, favoring the condensation product only for aldehydes with no α substituent
- Steric factors are increased in the aldol product

Aldehydes and Ketones and the Aldol Equilibrium

Ketones

© 2007 Thomson Higher Education

Mechanism of Aldol Reactions

- Aldol reactions, like all carbonyl condensations, occur by nucleophilic addition of the enolate ion of the donor molecule to the carbonyl group of the acceptor molecule
 - The addition intermediate is protonated to give an alcohol product

Base removes an acidic alpha hydrogen from one aldehyde molecule, yielding a resonance-stabilized enolate ion.

2 The enolate ion attacks a second aldehyde molecule in a nucleophilic addition reaction to give a tetrahedral alkoxide ion intermediate.

Protonation of the alkoxide ion intermediate yields neutral aldol product and regenerates the base catalyst.

Carbonyl Condensation versus Alpha-Substitution

- Carbonyl condensations and α substitutions both involve formation of enolate ion intermediates
- Alpha-substitution reactions are accomplished by converting all of the carbonyl compound to enolate form so it is not an electrophile
- Immediate addition of an alkyl halide to completes the alkylation reaction

Conditions for Condensations

- A small amount of base is used to generate a small amount of enolate in the presence of unreacted carbonyl compound
- After the condensation, the basic catalyst is regenerated

Dehydration of Aldol Products: Synthesis of Enones

- The β-hydroxy carbonyl products dehydrate to yield conjugated enones
- The term "condensation" refers to the net loss of water and combination of 2 molecules

A β-hydroxy ketone or aldehyde

A conjugated enone

Dehydration of b-Hydroxy Ketones and Aldehydes

- The α hydrogen is removed by a base, yielding an enolate ion that expels the –OH leaving group
- Under acidic conditions the —OH group is protonated and water is expelled

Driving the Equilibrium

- Removal of water from the aldol reaction mixture can be used to drive the reaction toward products
- Even if the initial aldol favors reactants, the subsequent dehydration step pushes the reaction to completion

Using Aldol Reactions in Synthesis

If a desired molecule contains either a β-hydroxy carbonyl or a conjugated enone, it might come from an aldol reaction

Extending the Synthesis

- Subsequent transformations can be carried out on the aldol products
- A saturated ketone might be prepared by catalytic hydrogenation of the enone product

Mixed Aldol Reactions

- A mixed aldol reaction between two similar aldehyde or ketone partners leads to a mixture of four possible products
- This is not useful

Practical Mixed Aldols

- If one of the carbonyl partners contains no α hydrogens and the carbonyl is unhindered (such as benzaldehyde and formaldehyde) it is a good electrophile and can react with enolates, then a mixed aldol reaction is likely to be successful
- 2-methylcyclohexanone gives the mixed aldol product on reaction with benzaldehyde

Mixed Aldols With Acidic Carbonyl Compounds

- Ethyl acetoacetate is completely converted into its enolate ion under less basic conditions than monocarbonyl partners
- Aldol condensations with ethyl acetoacetate occur preferentially to give the mixed product

Intramolecular Aldol Reactions

Treatment of certain *di*carbonyl compounds with base produces cyclic products by intramolecular reaction

Mechanism of Intramolecular Aldol Reactions

- Both the nucleophilic carbonyl anion donor and the electrophilic carbonyl acceptor are now in the same molecule.
- The least strained product is formed because the reaction is reversible

The Claisen Condensation Reaction

Reaction of an ester having an α hydrogen with 1 equivalent of a base to yield a β-keto ester

Mechanism of the Claisen Condensation

Similar to aldol condensation: nucleophilic acyl substitution of an ester enolate ion on the carbonyl group of a second ester molecule

Features of the Claisen Condensation

- If the starting ester has more than one acidic a hydrogen, the product β-keto ester has a doubly activated proton that can be abstracted by base
- Requires a full equivalent of base rather than a catalytic amount
- The deprotonation drives the reaction to the product

Mixed Claisen Condensations

Successful when one of the two esters acts as the electrophilic acceptor in reactions with other ester anions to give mixed β-keto esters

Esters and Ketones

- Reactions between esters and ketones, resulting in β-diketones
- Best when the ester component has no α hydrogens and can't act as the nucleophilic donor

Intramolecular Claisen Condensations: The Dieckmann Cyclization

- Intramolecular Claisen condensation
- Best with 1,6-diesters (product: 5-membered β-ketoester) and 1,7-diesters (product: 6-membered β-ketoester)

Mechanism of the Dieckmann Cyclization

Alkylation of Dieckmann Product

The cyclic β-keto ester can be further alkylated and decarboxylated as in the acetoacetic ester synthesis

Conjugate Carbonyl Additions: The Michael Reaction

Enolates can add as nucleophiles to α,β-unsaturated aldehydes and ketones to give the conjugate addition product

© 2007 Thomson Higher Education

Best Conditions for the Michael Reaction

- When a particularly stable enolate ion
- Example: Enolate from a β-keto ester or other 1,3dicarbonyl compound adding to an unhindered α,βunsaturated ketone

Mechanism of the Michael Reaction

Nucleophilic addition of a enolate ion donor to the β carbon of an α,β-unsaturated carbonyl acceptor

Generality of the Michael Reaction

- Occurs with a variety of α,β-unsaturated carbonyl compounds (aldehydes, esters, nitriles, amides, and nitro compounds)
- Donors include β-diketones, β-keto esters, malonic esters, β-keto nitriles, and nitro compounds
- See Table 23.1

Carbonyl Condensations with Enamines: The Stork Reaction

- Enamines are equivalent to enolates in their reactions and can be used to accomplish the transformations under milder conditions
- Enamines are prepared from a ketone and a secondary amine

H₂O

Cyclohexanone

Pyrrolidine

1-Pyrrolidinocyclohexene (87%)

© 2007 Thomson Higher Education

Enamines Are Nucleophilic

Overlap of the nitrogen lone-pair orbital with the double-bond π orbitals increases electron density on the α carbon atom

Enamine Addition and Hydrolysis

- Enamine adds to an α,β-unsaturated carbonyl acceptor
- The product is hydrolyzed to a 1,5-dicarbonyl compound

A 1,5-diketone (71%)

The Robinson Annulation Reaction

- A two-step process: combines a Michael reaction with an intramolecular aldol reaction
- The product is a substituted 2-cyclohexenone

Some Biological Carbonyl Condensation Reactions

- Malonyl ACP is decarboxylated and enolate is formed
- Enolate is added to the carbonyl group of another acyl group through a thioester linkage to a synthase

Tetrahedral intermediate gives acetoacetyl ACP

